
page-objects Documentation
Release 1.0.0

Edward Easton

March 09, 2015

Contents

1 Quick Example 3

2 Installation 5

3 Table Of Contents 7
3.1 Introduction . 7
3.2 Tutorial . 7
3.3 Project History . 10

i

ii

page-objects Documentation, Release 1.0.0

Page Objects are a testing pattern for websites. Page Objects model a page on your site to provide accessors and
methods for interacting with this page, both to reduce boilerplate and provide a single place for element locators.

This project is an implementation of this pattern for Python using Selenium webdriver. It is agnostic to test harnesses
and designed to help you build up libraries of code to test your sites.

The Python Selenium API is documented here: http://selenium-python.readthedocs.org

Contents 1

http://selenium-python.readthedocs.org

page-objects Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Quick Example

>>> from page_objects import PageObject, PageElement
>>> from selenium import webdriver
>>>
>>> class LoginPage(PageObject):

username = PageElement(id_='username')
password = PageElement(name='password')
login = PageElement(css='input[type="submit"]')

>>> driver = webdriver.PhantomJS()
>>> driver.get("http://example.com")
>>> page = LoginPage(driver)
>>> page.username = 'secret'
>>> page.password = 'squirrel'
>>> assert page.username.text == 'secret'
>>> page.login.click()

3

page-objects Documentation, Release 1.0.0

4 Chapter 1. Quick Example

CHAPTER 2

Installation

$ pip install page_objects

5

page-objects Documentation, Release 1.0.0

6 Chapter 2. Installation

CHAPTER 3

Table Of Contents

3.1 Introduction

Browser-based testing is hard to get right. There are wonderful tools out there like Seleinum that allow us to drive a
web browser around our sites with the minimum of effort to provide true integration tests.

With this great power however, comes a great way to create thousands of lines of complicated test code with finicky
timeouts and brittle execution. Tests that are often easier to set fire to and re-write than fix when your designers decide
to change the layout of the HTML.

What Page Objects are for is to encourage you to write your browser tests in a maintainable and supportable way that
makes it easier to keep the tests alive as the underlying site changes.

The Page Object model isn’t new, or something that I’ve invented here. There are numerous examples and discussions
on the web: http://lmgtfy.com/?q=Page+Object+Model

This is an implementation of the pattern for Python using Selenium webdriver that I have found useful as my time as
a developer. It is not tied to any particular test framework. The codebase is tiny and has remained largely unchanged
for several years. I hope you enjoy using them as much as I have!

3.2 Tutorial

3.2.1 Example HTML

Throughout this tutorial, we’ll use the following simple web page with a form to demonstrate the page objects pattern.

<html>
<head>

<title>Login Page</title>
</head>
<body>

<form type="POST" action="/login">
<input type="text" name="username" id="user-input"></input>
<input type="password" name="password"></input>
<input type="submit">Submit</input>

</form>
</body>

</html>

Let’s assume also that this page is hosted on the url http://example.com/login

7

http://lmgtfy.com/?q=Page+Object+Model
http://example.com/login

page-objects Documentation, Release 1.0.0

3.2.2 A simple Page Object

Here’s a simple page object that models this page.

>>> from page_objects import PageObject, PageElement
>>>
>>> class LoginPage(PageObject):

username = PageElement(id_='user-input')
password = PageElement(name='password')
login = PageElement(css='input[type="submit"]')
form = PageElement(tag_name='form')

3.2.3 What is a Page Object?

It is a class that, when instantiated, models a single page on your website. It has attributes on it that model elements on
the page. Accessing the attributes on the Page Object instance accesses the live elements on the page, thus removing
the need for your test code to worry about how to go about finding them.

In our example, the LoginPage class is how the test will access the login page HTML, it has three attributes of type
PageElement that refer to the three input elements, and one for the form.

3.2.4 Page Elements and locators

Page Elements allow you to specify in exactly one place how to find a particular element on your
page. They are implemented using the Descriptor protocol which you can read more about here:
https://docs.python.org/3.4/howto/descriptor.html. When constructing a Page Element, you specify the locator for
the element, which can be any from the following table:

Keyword Arg Description

id_
Element ID attribute

css CSS Selector
name Element name attribute
class_name Element class name
tag_name Element HTML tag name
link_text Anchor Element text content
partial_link_text Anchor Element partial text content
xpath XPath

These map directly to Selenium Webdriver’s element accessor API which is documented here: http://selenium-
python.readthedocs.org/en/latest/locating-elements.html

3.2.5 Using Page Objects

Page Objects are constructed with an instantiated webdriver instance, and optinally a root URI:

>>> from selenium import webdriver
>>> driver = webdriver.PhantomJS()
>>> page = LoginPage(driver, root_uri="http://example.com")

Here I’ve used the PhantomJS webdriver which is a convenient way to test your site without needing a full browser
stack installed. The root URI is purely to provide a base for the Page Object’s one and only method, get():

>>> page.get('/login')

8 Chapter 3. Table Of Contents

https://docs.python.org/3.4/howto/descriptor.html
http://selenium-python.readthedocs.org/en/latest/locating-elements.html
http://selenium-python.readthedocs.org/en/latest/locating-elements.html

page-objects Documentation, Release 1.0.0

This call above instructs the browser to load the url http://example.com/login.

3.2.6 Accessing Page Elements

To access elements on the page we get attributes on the page object. This will return a Selenium WebElement
instance for the selector that was specified in the PageElement’s constructor. If the element is not found, it will return
None.

For example, to check that the form above was using POST instead of GET, we would do the following.

>>> page.form
<selenium.webdriver.remote.webelement.WebElement object at 0x2b089299a510>
>>> assert page.form.get_attribute('type') == 'POST'

Here, accessing page.form gets the form element off of the page, allowing us to run the
WebElement.get_attribute function to return its form type.

3.2.7 Interacting with Page Elements

We can interact with page elements in our tests as well. To type in text inputs, we can set attributes on the Page Object.
This sends the text that we set on the attribute to the Selenium WebElement using its send_keys method.

For example, to fill in the form above, and then click the login button we would do the following:

>>> page.username = 'secret'
>>> page.password = 'squirrel'
>>> page.login.click()

3.2.8 Multi Page Elements

Sometimes we we want to access lists of elements from the page. To do this there is a MultiPageElement class
which is constructed exactly the same as PageElement.

>>> from page_objects import PageObject, MultiPageElement
>>>
>>> class LoginPage(PageObject):

inputs = MultiPageElement(tag_name='input')

When accessed, they return a list of the matching elements, or an empty list if there was nothing found.

>>> page.inputs
[<selenium.webdriver.remote.webelement.WebElement object at 0x2b089299a510>,
<selenium.webdriver.remote.webelement.WebElement object at 0x2b089299a520>,
<selenium.webdriver.remote.webelement.WebElement object at 0x2b089299a530>]

You can send text to them all as well:

>>> page.inputs = 'squirrels'

3.2.9 Elements with context

By default, when the PageElement objects are searching on the page for their matching selector, they are searching
from the root of the DOM. Or to put it another way, they are searching across the whole page. Sometimes, it might be
better to search within the context of another element if you have many similar items on the page.

3.2. Tutorial 9

http://example.com/login

page-objects Documentation, Release 1.0.0

Take this example where there are more than one login form on the page:

<html>
<body>

<form id="login-1" type="POST" action="/login-1">
<input type="text" name="username"></input>
<input type="password" name="password"></input>
<input type="submit">Submit</input>

</form>
<form id="login-2" type="POST" action="/login-2">

<input type="text" name="username"></input>
<input type="password" name="password"></input>
<input type="submit">Submit</input>

</form>
</body>

</html>

You could have separate page elements for each form input, like this:

>>> class LoginPage(PageObject):
submit_1 = PageElement(css='#form-1 input[type="submit"]')
submit_2 = PageElement(css='#form-2 input[type="submit"]')

However, you can also construct the page elements with the context flag set like this:

>>> class LoginPage(PageObject):
form1 = PageElement(id_='form-1')
form2 = PageElement(id_='form-1')
submit = PageElement(css='input[type="submit"]', context=True)

This allows you to access the submit element within a form element, by calling the submit element like you would a
method:

>>> page.submit(page.form1).click()

In this way, Page Elements with context are like ‘saved searches’.

3.2.10 Accessing the Webdriver directly

You can always access the webdriver that the Page Object was constructed with direcly, using the w attribute.

>>> page.w
<selenium.webdriver.phantomjs.webdriver.WebDriver object at 0x2b0891af39d0>
>> page.w.current_url
'http://example.com/login'

3.3 Project History

This was originally part of the pkglib project at http://github.com/ahlmss/pkglib, it has been forked to retain history.

3.3.1 Release History

1.1.0 (2014-10-15)

• Added feature: PageElements can now be contructed with context

10 Chapter 3. Table Of Contents

http://github.com/ahlmss/pkglib

page-objects Documentation, Release 1.0.0

• Deprecated page_element and mutli_page_element factory methods

1.0.1 (2014-09-30)

• Added PageObject.get(uri) method, based off of the page’s root_uri attribute.

1.0.0 (2014-09-29)

• Initial export from http://github.com/ahlmss/pkglib

• genindex

• modindex

3.3. Project History 11

http://github.com/ahlmss/pkglib

	Quick Example
	Installation
	Table Of Contents
	Introduction
	Tutorial
	Project History

