

 Navigation

 	
 index

 	
 next |

 	page-objects 1.0.0 documentation

Page Objects for Python

Page Objects are a testing pattern for websites. Page Objects model a page on
your site to provide accessors and methods for interacting with this page,
both to reduce boilerplate and provide a single place for element locators.

This project is an implementation of this pattern for Python using Selenium
webdriver. It is agnostic to test harnesses and designed to help you build up
libraries of code to test your sites.

The Python Selenium API is documented here: http://selenium-python.readthedocs.org

Quick Example

>>> from page_objects import PageObject, PageElement
>>> from selenium import webdriver
>>>
>>> class LoginPage(PageObject):
 username = PageElement(id_='username')
 password = PageElement(name='password')
 login = PageElement(css='input[type="submit"]')

>>> driver = webdriver.PhantomJS()
>>> driver.get("http://example.com")
>>> page = LoginPage(driver)
>>> page.username = 'secret'
>>> page.password = 'squirrel'
>>> assert page.username.text == 'secret'
>>> page.login.click()

Installation

$ pip install page_objects

Table Of Contents

	Introduction

	Tutorial
	Example HTML

	A simple Page Object

	What is a Page Object?

	Page Elements and locators

	Using Page Objects

	Accessing Page Elements

	Interacting with Page Elements

	Multi Page Elements

	Elements with context

	Accessing the Webdriver directly

	Project History
	Release History
	1.1.0 (2014-10-15)

	1.0.1 (2014-09-30)

	1.0.0 (2014-09-29)

	Index

	Module Index

 Copyright 2014, Edward Easton.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	page-objects 1.0.0 documentation

Introduction

Browser-based testing is hard to get right. There are wonderful tools out
there like Seleinum that allow us to drive a web browser around our sites
with the minimum of effort to provide true integration tests.

With this great power however, comes a great way to create thousands of lines
of complicated test code with finicky timeouts and brittle execution. Tests
that are often easier to set fire to and re-write than fix when your designers
decide to change the layout of the HTML.

What Page Objects are for is to encourage you to write your browser tests
in a maintainable and supportable way that makes it easier to keep the
tests alive as the underlying site changes.

The Page Object model isn’t new, or something that I’ve invented here.
There are numerous examples and discussions on the web:
http://lmgtfy.com/?q=Page+Object+Model

This is an implementation of the pattern for Python using Selenium webdriver
that I have found useful as my time as a developer. It is not tied to any
particular test framework. The codebase is tiny and has remained largely
unchanged for several years. I hope you enjoy using them as much as I have!

 Copyright 2014, Edward Easton.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	page-objects 1.0.0 documentation

Tutorial

Example HTML

Throughout this tutorial, we’ll use the following simple web page with a form to
demonstrate the page objects pattern.

<html>
 <head>
 <title>Login Page</title>
 </head>
 <body>
 <form type="POST" action="/login">
 <input type="text" name="username" id="user-input"></input>
 <input type="password" name="password"></input>
 <input type="submit">Submit</input>
 </form>
 </body>
</html>

Let’s assume also that this page is hosted on the url http://example.com/login

A simple Page Object

Here’s a simple page object that models this page.

>>> from page_objects import PageObject, PageElement
>>>
>>> class LoginPage(PageObject):
 username = PageElement(id_='user-input')
 password = PageElement(name='password')
 login = PageElement(css='input[type="submit"]')
 form = PageElement(tag_name='form')

What is a Page Object?

It is a class that, when instantiated, models a single page on your website.
It has attributes on it that model elements on the page. Accessing the attributes
on the Page Object instance accesses the live elements on the page, thus removing
the need for your test code to worry about how to go about finding them.

In our example, the LoginPage class is how the test will access the login page
HTML, it has three attributes of type PageElement that refer to the three
input elements, and one for the form.

Page Elements and locators

Page Elements allow you to specify in exactly one place how to find a particular
element on your page. They are implemented using the Descriptor protocol which
you can read more about here: https://docs.python.org/3.4/howto/descriptor.html.
When constructing a Page Element, you specify the locator for the element, which
can be any from the following table:

	Keyword Arg
	Description

	id_
	Element ID attribute

	css
	CSS Selector

	name
	Element name attribute

	class_name
	Element class name

	tag_name
	Element HTML tag name

	link_text
	Anchor Element text content

	partial_link_text
	Anchor Element partial text content

	xpath
	XPath

These map directly to Selenium Webdriver’s element accessor API which is documented
here: http://selenium-python.readthedocs.org/en/latest/locating-elements.html

Using Page Objects

Page Objects are constructed with an instantiated webdriver instance, and
optinally a root URI:

>>> from selenium import webdriver
>>> driver = webdriver.PhantomJS()
>>> page = LoginPage(driver, root_uri="http://example.com")

Here I’ve used the PhantomJS webdriver which is a convenient way to test your
site without needing a full browser stack installed. The root URI is purely
to provide a base for the Page Object’s one and only method, get():

>>> page.get('/login')

This call above instructs the browser to load the url http://example.com/login.

Accessing Page Elements

To access elements on the page we get attributes on the page object. This will
return a Selenium WebElement instance for the selector that was specified
in the PageElement’s constructor. If the element is not found, it will return
None.

For example, to check that the form above was using POST instead of GET, we would
do the following.

>>> page.form
<selenium.webdriver.remote.webelement.WebElement object at 0x2b089299a510>
>>> assert page.form.get_attribute('type') == 'POST'

Here, accessing page.form gets the form element off of the page, allowing us
to run the WebElement.get_attribute function to return its form type.

Interacting with Page Elements

We can interact with page elements in our tests as well. To type in text inputs,
we can set attributes on the Page Object. This sends the text that we set on the
attribute to the Selenium WebElement using its send_keys method.

For example, to fill in the form above, and then click the login button we would do
the following:

>>> page.username = 'secret'
>>> page.password = 'squirrel'
>>> page.login.click()

Multi Page Elements

Sometimes we we want to access lists of elements from the page. To do this there is
a MultiPageElement class which is constructed exactly the same as PageElement.

>>> from page_objects import PageObject, MultiPageElement
>>>
>>> class LoginPage(PageObject):
 inputs = MultiPageElement(tag_name='input')

When accessed, they return a list of the matching elements, or an empty list if there
was nothing found.

>>> page.inputs
[<selenium.webdriver.remote.webelement.WebElement object at 0x2b089299a510>,
 <selenium.webdriver.remote.webelement.WebElement object at 0x2b089299a520>,
 <selenium.webdriver.remote.webelement.WebElement object at 0x2b089299a530>]

You can send text to them all as well:

>>> page.inputs = 'squirrels'

Elements with context

By default, when the PageElement objects are searching on the page for their matching
selector, they are searching from the root of the DOM. Or to put it another way, they
are searching across the whole page. Sometimes, it might be better to search within
the context of another element if you have many similar items on the page.

Take this example where there are more than one login form on the page:

<html>
 <body>
 <form id="login-1" type="POST" action="/login-1">
 <input type="text" name="username"></input>
 <input type="password" name="password"></input>
 <input type="submit">Submit</input>
 </form>
 <form id="login-2" type="POST" action="/login-2">
 <input type="text" name="username"></input>
 <input type="password" name="password"></input>
 <input type="submit">Submit</input>
 </form>
 </body>
</html>

You could have separate page elements for each form input, like this:

>>> class LoginPage(PageObject):
 submit_1 = PageElement(css='#form-1 input[type="submit"]')
 submit_2 = PageElement(css='#form-2 input[type="submit"]')

However, you can also construct the page elements with the context flag set like this:

>>> class LoginPage(PageObject):
 form1 = PageElement(id_='form-1')
 form2 = PageElement(id_='form-1')
 submit = PageElement(css='input[type="submit"]', context=True)

This allows you to access the submit element within a form element, by calling
the submit element like you would a method:

>>> page.submit(page.form1).click()

In this way, Page Elements with context are like ‘saved searches’.

Accessing the Webdriver directly

You can always access the webdriver that the Page Object was constructed with
direcly, using the w attribute.

>>> page.w
<selenium.webdriver.phantomjs.webdriver.WebDriver object at 0x2b0891af39d0>
>> page.w.current_url
'http://example.com/login'

 Copyright 2014, Edward Easton.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	page-objects 1.0.0 documentation

Project History

This was originally part of the pkglib project at http://github.com/ahlmss/pkglib,
it has been forked to retain history.

Release History

1.1.0 (2014-10-15)

	Added feature: PageElements can now be contructed with context

	Deprecated page_element and mutli_page_element factory methods

1.0.1 (2014-09-30)

	Added PageObject.get(uri) method, based off of the page’s root_uri attribute.

1.0.0 (2014-09-29)

	Initial export from http://github.com/ahlmss/pkglib

 Copyright 2014, Edward Easton.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	page-objects 1.0.0 documentation

Index

 Copyright 2014, Edward Easton.
 Created using Sphinx 1.2.3.

 _static/up-pressed.png

_static/comment.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		page-objects 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Edward Easton.
 Created using Sphinx 1.2.3.

_static/up.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/down-pressed.png

_static/comment-close.png

